HARVARD’S EXPANDING CAMPUS IN ALLSTON

THINK OUTSIDE THE SQUARE
“We are entering a new era of higher education—one that will be shaped by new global and digital realities. In Allston, Harvard confronts an unparalleled opportunity to seize this future and leverage the University’s extraordinary historic strengths in new ways for new times.”

DREW GILPIN FAUST, PRESIDENT OF HARVARD UNIVERSITY AND LINCOLN PROFESSOR OF HISTORY
KENDALL SQUARE IN CAMBRIDGE began as a salt marsh, the Longwood Medical Area in Boston was once cow pastures, and Silicon Valley in Palo Alto was known as the canning and dried-fruit packing center of the world. Creating change takes vision, an entrepreneurial spirit, and a canvas to draw on.

Today, Harvard has an opportunity that is rare for modern universities: contiguous space to imagine, expand, and build a campus for the next century. At this landmark juncture, the University is building an academic neighborhood where science, technology, medicine, and business meet within the fabric of the existing vibrant community of Allston. A place where today’s efforts to change drug development and delivery, to revolutionize the role of robotics in aiding people with physical disabilities, and to shift the health care paradigm will result in people around the world living longer, healthier lives. Where cutting-edge renewable energy storage is pioneered to power a more sustainable future. Where the deluge of data from around the globe can be translated into solutions to complex issues—such as climate change, diagnosing disease, and global business innovation.

This will be a neighborhood built by people. By scientists, entrepreneurs, artists, and innovators. By undergraduate and graduate students, faculty, industry leaders, and community members. It will be built on big ideas and ambitions to tackle the most complex challenges facing the world. It will be built in classrooms, in laboratories, in lecture halls, and through collaborations fueled by chance encounters and strategic connections.

With 360 total acres of land owned by Harvard, Allston will provide critical new capacity for experimentation, teaching, and research. Embedded in the largest life science hub in the world, the Allston neighborhood will be anchored by both established University entities and new additions, and its success will be at the intersection between them. Harvard’s students and alumni have a significant history of entrepreneurship, from companies like Microsoft and Facebook to more recent endeavors such as Airbnb and Zappos. By building a state-of-the-art Science and Engineering Complex across the street from Harvard Business School and the Harvard Innovation Lab (i-lab), Harvard is seeding the ground for critical advances in the digital economy, health care, technology, and entrepreneurship.

Allston will serve as a bridge between Cambridge and Longwood and enrich the robust entrepreneurial activity that is already happening across the Boston metropolitan area. Over 36 acres are dedicated to an Enterprise Research Zone that will connect student, faculty, and alumni ideas to industry. Here, veteran companies and start-ups alike will make new homes alongside the classrooms and laboratories driving Harvard’s cutting-edge research. In concert with the Harvard Ed Portal, the Harvard Ceramics Studio, and Harvard Athletics, this neighborhood will help shape Harvard’s future as a place of active learning, a space for innovative thinking, a community for leaders, a hub of entrepreneurship, a platform for interdisciplinary collaborations, and a destination for visitors.

Harvard is poised to transform the intellectual and physical landscape of its campus, and the expansion into Allston will define the University’s legacy this century.
SCIENCE AND ENGINEERING AT THE HARVARD PAULSON SCHOOL

1. 3D PRINTING-CRAFTED SURGICAL GRASPER
2. BLOOD-CLEANSING BIOSPLEEN DEVICE
3. ROBOTIC INSECT OR "ROBOBEE"
4. ORGAN-ON-A-CHIP
5. KILOBOTS, SELF-ORGANIZING THOUSAND-ROBOT SWARM
6. WEARABLE ROBOTIC SOFT EXOSUIT
7. SELF-ASSEMBLED ROBOTS

129 NOBEL PRIZES IN PHYSICS, CHEMISTRY, AND PHYSIOLOGY OR MEDICINE AWARDED TO HARVARD FACULTY AND ALUMNI

2,136 PATENTS HELD BY HARVARD RESEARCHERS

169 YEARS OF SCIENCE AND ENGINEERING AT HARVARD, BEGINNING WITH THE LAWRENCE SCIENTIFIC SCHOOL IN 1847
HARVARD IS COMMITTED TO SOLVING the world’s most challenging problems—the demand for energy; climate change; cybersecurity; and providing clean water, modern infrastructure, and health care for a growing population. These issues are unprecedented in their complexity, and they require creative, cross-disciplinary ideas.

To address these challenges, Harvard is pioneering a new type of engineering and applied sciences education, one that is deeply integrated with Harvard’s liberal arts and sciences curriculum. The leaders, engineers, scientists, and inventors who will tackle the challenges of the 21st century must be fluent in the societal context of their work, acquiring critical thinking skills through broad exposure to the arts, humanities, and social sciences. By the same measure, today’s students in the liberal arts must be versed in the science and engineering concepts that underlie modern society. In 2007, Harvard elevated a long-standing division into the University’s newest school—now known as the Harvard John A. Paulson School of Engineering and Applied Sciences.

Francis J. Doyle III, the inaugural John A. Paulson Dean of the Harvard Paulson School, joined Harvard in 2015, bringing intellectual leadership, distinguished scholarship in chemical engineering, and excellence in teaching. At Harvard, he continues his groundbreaking research into the design of drug-delivery devices for diabetes; modeling, analysis, and control of gene regulatory networks underlying circadian rhythms; and computational analysis for developing diagnostics for post-traumatic stress disorder. Dean Doyle arrived at an exciting time, with tremendous potential to thoughtfully grow the School and expand opportunities for teaching and research.

The unique strength of the Harvard Paulson School is its position within the greatest collection of professional and undergraduate programs in the world. In the past few years, enrollment has tripled, with more than half of all Harvard undergraduates now electing to take at least one course in computer science.

Harvard’s open environment enables collaborations in the arts, sciences, mathematics, design, medicine, government, law, and industry—with partnerships that draw on the best ideas across disciplines. From building a swarm of robots that can arrange themselves into complex shapes to 3D printing an organ using biomimetic materials, the Harvard Paulson School faculty are pioneering technological advances that cross boundaries.

In the past eight years, teams at the Harvard Paulson School have developed an organ-on-a-chip that is suitable for drug testing, regenerated musculoskeletal tissues, and created a robot that assembles itself from a single sheet of paper—in just four minutes—and moves without human intervention. They’ve designed a soft exosuit that fits under clothing to help soldiers walk farther, tire less easily, and carry heavy loads more safely. Faculty invented a “biospleen” device to rid human blood of pathogens, which has the potential to transform how doctors treat sepsis, the leading cause of hospital deaths. Inspired by the biology of a fly, they’ve even built a “RoboBee” that could have applications in environmental monitoring, search-and-rescue operations, and crop pollination.

And it’s not just professors at the Harvard Paulson School who are advancing science and technology. Engineering students teamed up with a surgeon to design the gentle grasper, a surgical tool equipped with rubberized pressure sensors that can slip through a small incision and manipulate delicate tissues—an innovation that has the potential to reduce hemorrhaging and save lives.

With broad faculty expertise and cohorts of exceptional students, the Harvard Paulson School is translating discoveries in the classroom and laboratory into real-world applications.
“Harvard is transforming Allston into a hub of entrepreneurship that will draw on the region’s extraordinary strengths to attract thinkers and doers from around the world.”

STEVE BALLMER AB ’77, FORMER CEO OF MICROSOFT
THE SCIENCE AND ENGINEERING COMPLEX WILL BE THE FIRST PHASE OF CONSTRUCTION IN HARVARD’S NEW ONE MILLION-SQUARE-FOOT, FIVE-ACRE SCIENCE YARD.

DESIGNED BY AWARD WINNING ARCHITECT STEFAN BEHNISCH, the Science and Engineering Complex, at approximately 500,000 square feet, will run along Western Avenue and be surrounded by an additional 70,000 square feet of green space. The cornerstone of Harvard’s expanding campus in Allston, the Complex will house scientists, researchers, students, and staff from the Harvard Paulson School—including more than 800 undergraduate concentrators and more than 400 graduate students.

Encompassing a broad range of research areas—from robotics to medicine to computer science to 3D printing—the Science and Engineering Complex will accommodate research, teaching, and community spaces. The design of the building balances the demands of varied disciplines and specialties. Areas for focused retreat mix with spaces for integrated communication and collaboration.

The entire Complex will span eight floors, two of which will be below ground at the courtyard level. The interior of the Complex will open to the Quadrangle, featuring recessed gardens that provide light into the lower floors of the building and accessible terraces with ample greenery and seating.
AS A NEW FLAGSHIP BUILDING for science and engineering, and as an anchor for Harvard’s expanding campus in Allston, the Complex reflects the spirit of innovation that for four centuries has been a hallmark of the University. The Complex’s active-learning classrooms, flexible laboratories, and core facilities signal a new era for science and engineering at Harvard. The building is a space to fill with the ideas of tomorrow. The façade design is an important feature of the Complex. The ground and entry levels will incorporate stone and masonry, providing a solid base for the public realm of the building. The upper floors will be lighter and more transparent, using glass to increase natural light into the long and deep research laboratories. The building materials will enhance sustainability and optimize energy management—minimizing heat loss in winter months and taking advantage of natural ventilation in the warmer seasons. While the size of the Complex is significant, the design will ensure it is welcoming at the human scale.

“Buildings have to allow for ever-changing technology. Architects don’t tell people how to use the space. They design for the ability to adapt. It should be a more open and communicative environment while also acknowledging the need for quiet spaces—more balanced and adaptive spaces.”

STEFAN BEHNISCH, BEHNISCH ARCHITEKTEN
NAMING OPPORTUNITIES

Both the Complex and the surrounding public spaces will encourage interaction and facilitate innovation that is simultaneously social and technical, private and public. The following naming opportunities would recognize unrestricted gifts that support the construction of the Science and Engineering Complex and the programmatic needs of the Harvard Paulson School.
THE ATRIUM will be the heart and soul of the building. Encompassing 55,000 square feet of space throughout all eight floors, it can be thought of as a vertical reimagining of Harvard Yard—a campus crossroads where people not only travel but also connect. As the Complex’s main hub, the Atrium will link the upper floors of research to the courtyard-level classrooms. The interior staircases will be designed to encourage conversation and interaction.

Daylight will fill the building through large glass panels overlooking the Quadrangle. Outside spaces will also be connected to the complex through adjoining terrace spaces, common rooms, and ground-level corridors that join the Quadrangle with Western Avenue, blurring the boundary between indoor and outdoor. The Atrium will also include meeting and social spaces and encompass adjoining common areas on all floors of the Complex.

In addition to being the physical center of the building, it will serve as the Complex’s central meeting and learning hub, including a 6,000-square-foot collaborative study space and library space, as well as the building’s largest café and dining area, on the first floor.
VIEW OF THE COMPLEX FROM THE QUADRANGLE
IN BUILDING A CAMPUS, the public space between buildings matters as much as the structures themselves. The historic Harvard Yard, for example, brings together multiple buildings into a unified sense of place, providing an iconic location for students, faculty, and visitors from around the world to enjoy. In Allston, this outdoor place for respite and relaxation will be the Science and Engineering Quadrangle.

With approximately 70,000 square feet of green space extending behind the Science and Engineering Complex, the Quadrangle will include space for food trucks and other outdoor dining options, as well as a staging area for events, lectures, and academic activities. Harvard’s iconic spaces—Tercentenary Theatre in Harvard Yard, Radcliffe Yard, and the quadrangles of Harvard Medical School and Harvard Law School—have become beloved at the University. The Science and Engineering Quadrangle will join these signature spaces, serving as an outdoor anchor for the campus in Allston. The landscape design of the Quadrangle will support Harvard’s sustainability efforts, with plans that incorporate stormwater management.

Across the Quadrangle is the future site of a second building of the Complex, part of the next phase of developing the Science Yard. The Quadrangle is a public space that will enhance both the quality of life for the Harvard community and the quality of the urban environment that defines Harvard’s campus.
Enhance the public realm

Planned development will enhance the area's public realm through a consistent and carefully designed system of new sidewalks, streetscape, landscape, and civic spaces. Streets will be designed to provide generous pedestrian space, room for public street furnishings such as benches and lighting, pavement materials that provide comfort and ease for pedestrians, and accents of durable and attractive masonry materials evocative of Harvard's campus. The IMP also provides guidelines to ensure that long-term development of the area continues to produce a coherent, consistent, and attractive public realm. Planning for ground floor uses along Western Avenue and in the vicinity of Barry's Corner emphasizes transparency and activation at the street level.

Promote environmental sustainability

Harvard's Ten-Year Plan and Long-Term Vision will enhance the area's natural environment in a variety of ways. For example, the Greenway promotes better area-wide drainage and stormwater management, which will serve the drainage needs of surrounding development and potentially beyond. The existing Blackstone plant in Cambridge will provide thermal energy for the Ten-Year Plan without the near-term need for a generation plant in Allston. Prioritizing walking and biking will assist in minimizing automobile use in the area. New construction will target LEED Gold standards.
THE GREENWAY
NAMED FOR A GIFT OF $25 MILLION

BEGINNING AT RAY MELLONE PARK at the Honan-Allston Branch Library and extending east toward the Charles River, the Greenway forms the backbone of Harvard’s long-term vision for Allston, emphasizing sustainable development, civic engagement, and urban recreation and relaxation.

As the spine of Harvard campus in Allston, the 10-acre Greenway provides a continuous park-like setting that joins residential neighborhoods and public parks with University spaces and commercial development. The Greenway will also border the new Enterprise Research Zone—adjacent to the Science and Engineering Complex, Harvard Business School, and the Harvard Innovation Lab—which will connect students, faculty, and alumni with industry partners.

As Boston’s newest public landscape, the Greenway will enter a city parks tradition that began in 1634, when Bostonians created Boston Common, the oldest park in the U.S. More recently, the city’s 15-acre Rose Fitzgerald Kennedy Greenway transformed an abandoned highway into a beloved downtown space that hosts over 700,000 annual visitors. Similar to the Kennedy Greenway, the High Line in Manhattan, or Millennium Park in Chicago, the Allston Greenway will include public art, plazas for social gatherings, and seating throughout. It could also be home to outdoor festivals and gatherings for the greater Harvard-Allston community.

Sustainability is at the core of Harvard’s expansion into Allston and its plans for the Greenway. In order to ensure that all planning takes into account long-term effects, the University has included both environmental and social goals in its vision. From multi-use paths to enhancements to the area’s natural environment, the Greenway is also a living laboratory for teaching sustainable development and urban growth at Harvard. Planting indigenous New England trees, shrubs, and flowers will beautify the space while providing the University with an extended, real-world teaching environment for urban design, engineering, and biology, among other fields.

More than just a scenic expanse, the Greenway is also an essential artery for electrical and communications systems, utility infrastructure, and expanded transportation networks. It will be home to thousands of linear feet of new bike lanes and pedestrian paths, which will increase the walkability of the entire neighborhood. Early designs also include provisions for stormwater management, rainfall harvesting, and tree cover for natural cooling. The Greenway will be built in phases as the campus expands with the construction of Harvard buildings and private development in the Enterprise Research Zone.

Public green spaces—Boston Common and the Public Garden, Harvard Yard, the Rose Kennedy Greenway—are all essential to the social and cultural fabric of Boston and of Harvard. Like these other important spaces, the Allston Greenway will join the tradition of Boston’s Emerald Necklace in adding new civic space, strengthening physical beauty, and encouraging a sense of shared community.
ABOVE: THE APPROXIMATE LOCATION OF THE MAKER SPACE IS HIGHLIGHTED IN AN EXTERIOR VIEW OF THE SCIENCE AND ENGINEERING COMPLEX.
PROMOTING A CULTURE of active learning, the Maker Space augments what students learn in the classroom and provides versatile resources for them to develop a broad range of practical engineering skills. Located across the street from Harvard’s Innovation Lab (i-lab) and the Alumni Launch Lab, the Maker Space complements the innovative work already under way in Allston.

Prominently located at street level on Western Avenue, the Maker Space is designed with a wall of glass that faces the street and overlooks this principal thoroughfare.

The Maker Space will provide the tools and facilities to support the raw curiosity of Harvard’s engineers, inventors, scientists, artists, entrepreneurs, and designers.

The estimated 5,000-square-foot Maker Space will comprise two connected facilities. One will be a workshop open to the entire University. Here, students, faculty, and staff will have access to resources such as the next generation of 3D printing; collaborative team spaces; and manufacturing, assembly, and testing areas outfitted with carbon dioxide laser cutters, drills, saws, hand tools, molding and casting equipment, and electronics workstations. The second component, a classroom, will be equipped with tools for hands-on demonstrations as well as collaborative workspaces for long-term undergraduate projects.
RESEARCH CLUSTERS
To be responsive to the needs of Harvard’s faculty, the Complex will be outfitted with flexible research clusters—large laboratory spaces that can be defined and redefined as research priorities change and teams grow. Each research cluster is designed to accommodate multiple faculty and projects; the work benches in these areas can be subdivided, rearranged, and expanded to house varying numbers of faculty and students.

SCIENCE AND ENGINEERING RESEARCH LABORATORY CLUSTERS
EACH CAN BE NAMED FOR A GIFT OF $10 MILLION
These flexible, open-space laboratories are designed for easy adaptation and reconfiguration as research directions and projects change and as technologies advance. Some will be equipped with wet lab equipment to enable research in such areas as bioengineering and materials science; others will be dry labs to support areas such as robotics and electrical engineering.

GRADUATE RESEARCH FELLOWSHIPS
EACH CAN BE NAMED FOR A GIFT OF $1 MILLION OR MORE
To support the brightest minds and keep them engaged in the fields of science and engineering, Harvard seeks permanent funding for our research enterprise by endowing graduate fellowships. Attracting top scientific talent and providing the resources they need ensures a better tomorrow for everyone.

FACULTY RESEARCH FUNDS
EACH CAN BE NAMED FOR A GIFT OF $2.5 MILLION
Named faculty research funds underpin the research, teaching, and other costs associated with tenure-track and newly tenured faculty during the crucial early stages of their careers. These fellowships will help to attract, retain, and support the highest caliber faculty at the forefront of their research fields.
THE NANOSCALE FABRICATION AND REPLICATION LAB
NAMED FOR A GIFT OF $6 MILLION

Scientists can now see and manipulate extremely small objects—from particles less than one-billionth of a meter in size down to single atoms—to study their properties and explore potential applications. Nanotechnology holds immense promise for the future of medicine, electronics, bioengineering, and other fields for both industrial and consumer use. This estimated 5,000-square-foot lab and cleanroom will greatly expand Harvard’s capacity to conduct research in this field, providing the investigators with tools and a space to design and fabricate nanoscale structures.

THE MOTION CAPTURE LAB
NAMED FOR A GIFT OF $5 MILLION

This estimated 4,000-square-foot space will allow researchers to record and analyze the motion of humans, animals, plants, robots, or other objects in three dimensions. The observation, measurement, and interpretation of this kinetic data have applications for medical procedures and therapies, computer control and automation, and bioengineering.

THE MACHINE SHOP
NAMED FOR A GIFT OF $4 MILLION

The machine shop will provide essential equipment for both research and education. This estimated 3,000-square-foot facility will feature lathes, power saws, and other heavy equipment. One half of the shop will be dedicated to undergraduate teaching and projects. The other half, behind a security glass wall, will house the Scientific Instrument Shop, a professional machine shop that will be used to fabricate proprietary components for researchers.

THE ELECTRONICS SHOP
NAMED FOR A GIFT OF $2 MILLION

The electronics shop will provide critical support to engineers and computer science faculty, from custom circuit boards to wiring and other small electronics. This estimated 600-square-foot space will also be open to undergraduates who require specific electrical components for their own projects and classwork.

STUDENT GARAGES
NAMED FOR A GIFT OF $1 MILLION

A suite of two to three estimated 500-square-foot garages will be available to students for large-scale construction projects. The garages will be outfitted with heavy machinery equipment, specialized ventilation, and an enhanced power supply, and could be used to create solar cars, large-scale robots, or other oversized prototypes and models.

INNOVATION FUND
NAMED FOR A GIFT OF $250,000 OR MORE

This fund will provide the dean with flexible resources to incubate new research ideas, continue the most promising projects, and ensure that Harvard remains an engine for novel scientific discovery and advancement.

SPECIALTY CORE FACILITIES

The Complex has been intentionally designed to provide facilities with highly specialized equipment, services, and staff that would otherwise be too expensive, technical, or large for a single laboratory or research area. These spaces offer expertise and instrumentation as shared resources for scientists and engineers, in addition to specific fabrication shops dedicated to undergraduate teaching and research.

HARVARD’S EXPANDING CAMPUS IN ALLSTON
TEACHING AND LEARNING

TEACHING PLAZAS
EACH CAN BE NAMED FOR A GIFT OF $4 MILLION

The undergraduate teaching plazas will be unique active-learning classrooms outfitted with both tools and storage for long-term student projects. The only spaces of their kind at the University, they will include a series of storage areas that surround a central glass-walled work area, allowing for an efficient use of space and shared resources. The storage spaces will be assigned to a class for a semester; students will use the work space during class time for group projects and can continue to access the plaza outside of class hours.

RECORDING STUDIO
NAMED FOR A GIFT OF $2 MILLION

The estimated 2,500-square-foot studio will provide the technical facilities that will enable students and faculty to produce digital learning modules for use in classrooms and teaching plazas at the Harvard Paulson School, as well as massive open online courses (MOOCs) in engineering and applied sciences as part of HarvardX.

ACTIVE-LEARNING LABORATORIES

The Complex’s three specialized teaching laboratories are faculty-led, hands-on classrooms where students will build, create, and experiment. These labs will be outfitted based on specific areas and disciplines of study. Three active-learning laboratories are planned in the Complex:

BIOENGINEERING WET TEACHING LAB
Estimated 2,500 square feet
NAMED FOR A GIFT OF $3 MILLION

ENVIRONMENTAL AND CHEMICAL ENGINEERING WET TEACHING LAB
Estimated 2,500 square feet
NAMED FOR A GIFT OF $3 MILLION

COMPUTER TEACHING LAB
Estimated 500 square feet
NAMED FOR A GIFT OF $1.5 MILLION

SENIOR PROJECT STUDIO
NAMED FOR A GIFT OF $1 MILLION

In the past seven years, the number of undergraduate concentrators in engineering has tripled: today, more than 250 Harvard undergraduates are pursuing degrees in engineering. Each student participates in a senior-year capstone project that demonstrates mastery of engineering knowledge and techniques. An estimated 2,600-square-foot dedicated studio will be created for seniors working on their capstone project.
Master's Project Studio
Named for a Gift of $1 Million

Two studios totaling an estimated 3,400-square-feet are reserved exclusively for master’s students working on long-term projects in subjects such as computational science, engineering, and design engineering.

Classrooms and Workrooms
The Science and Engineering Complex is designed with spaces of various sizes to meet the evolving needs of pedagogical innovation. Classrooms and instructional spaces will define the lower courtyard- and garden-level floors. The following spaces represented across the Complex would be named in recognition of gifts ranging from $50,000 to $1 million.

Large Classroom
Named for a Gift of $1 Million

Medium Classrooms
Each can be named for a Gift of $500,000

Flexible Seminar Rooms
Each can be named for a Gift of $250,000

Student Work Rooms
Each can be named for a Gift of $50,000

Teaching Innovation Fund
Named for a Gift of $250,000 or More

This fund would provide flexible support for the cutting-edge pedagogies, equipment, and technologies that facilitate a dynamic education for students in today’s engineering and applied science fields.
COMMUNITY SPACES

LOUNGES
EACH CAN BE NAMED FOR A GIFT OF $500,000

Graduate students and postdocs will have a dedicated place to mix, mingle, share ideas, and learn from one another. The Graduate Lounge will be outfitted with tables, whiteboards, couches, and comfortable chairs to encourage interaction and collaboration in an informal space the students can call their own.

The Faculty Lounge will provide a similar dedicated space for faculty to engage in conversation and informal seminars.

EXHIBITION SPACES
EACH CAN BE NAMED FOR A GIFT OF $1 MILLION

Open galleries at the east and west entrances to the Complex will showcase student and faculty designs as well as highlight historical scientific progress from the earliest days of engineering and applied sciences at Harvard. Lined with indoor plantings, these two galleries will feature rotating exhibits. The East Gallery will be dedicated to student work, including designs and senior project posters. The West Gallery will celebrate the history of engineering at Harvard, acknowledging accomplishments such as the original code written by Bill Gates and Paul Allen and the Mark I computer.

GARDENS AND TERRACES

The Complex will be part of a neighborhood that will include lush green spaces that bring light and life into buildings. Two recessed gardens, one interior and one exterior, provide landscape and daylight to the teaching spaces on the courtyard levels. With a variety of informal seating areas and flexible, open spaces, these green spaces can be enjoyed by staff, students, and researchers as well as the broader community.

Ten outdoor terraces on the five upper floors will provide students and faculty with views of the Quadrangle or the busy thoroughfare of Western Avenue. These exterior lounges can be used as meeting rooms, spaces of quiet contemplation, or respites from research.

EXTERIOR RECESSED GARDEN
Estimated 3,000 square feet
NAMED FOR A GIFT OF $2.5 MILLION

INTERIOR RECESSED GARDEN
Estimated 1,000 square feet
NAMED FOR A GIFT OF $1 MILLION

OUTDOOR TERRACES
Sizes vary
EACH CAN BE NAMED FOR GIFTS BETWEEN $250,000 AND $1 MILLION
MEETING ROOMS
Sharing ideas, developing concepts, and refining solutions are core elements of collaboration. Spaces throughout the Science and Engineering Complex are designed to facilitate active partnerships between all members of the Harvard community.

DEAN’S CONFERENCE ROOM
NAMED FOR A GIFT OF $250,000

LARGE MEETING ROOM
NAMED FOR A GIFT OF $250,000

MEDIUM MEETING ROOMS
EACH CAN BE NAMED FOR A GIFT OF $100,000

SMALL MEETING ROOMS
EACH CAN BE NAMED FOR A GIFT OF $50,000

VIDEOCONFERENCE ROOMS
EACH CAN BE NAMED FOR A GIFT OF $20,000

SEAS+ FUND
NAMED FOR A GIFT OF $250,000 OR MORE

The Harvard Paulson School seeks to build new connections across the Harvard community, fostering a transdisciplinary approach to engineering and the applied sciences that will create new intellectual spaces for solving complex problems.

This fund will provide versatile support for creative teaching and research activities that cross disciplinary and administrative boundaries. This fund will allow the dean of the Harvard Paulson School to seed ideas and innovations at the forefront of collaborative, intellectual discovery.
SCIENCE AND ENGINEERING COMPLEX TIMELINE

Science and Engineering Complex

- Schematic Design
- Design Development
- Construction Start

Enabling & Infrastructure Projects

- Charlesview Site
- Drainage Infrastructure
- Roadway Infrastructure
- University Utility Infrastructure
Projects for the next decade involve renovation and reuse, building replacement, and new construction. The result will be a synergistic program of diverse uses including academic, residential, retail, athletics, hospitality, office, and assembly space. The illustrative plan depicts conceptual building footprints.

1. Harvard Business School Chao Center (Kresge Hall Replacement)
2. Klaman Hall
3. Harvard Business School Faculty & Administrative Office Building
4. Harvard Stadium Addition/Renovation
5. Mixed-Use Facility & Basketball Venue
6. Gateway Project
7. Hotel & Conference Center
8. Harvard Business School Baker Hall Renovation
9. Soldiers Field Park Housing Renovation
10. Barry’s Corner Residential & Retail Commons (Real Estate Partner: Samuels & Associates) Completed Fall 2015
11. Tata Hall Completed Fall 2013
12. Bright-Landry Hockey Center/ Gordon Track Addition/Renovation Completed Fall 2014
13. 224 Western Avenue Renovation Completed Fall 2013
14. 28 Travis Street Addition/Renovation Completed Fall 2013
BEHNISCH ARCHITEKTEN

Stefan Behnisch is the founding partner of Behnisch Architekten. A world-renowned educator and advocate of sustainable building design, he has lectured at conferences all over the world. Behnisch’s goal—to connect the forces of human life and the natural environment—fuels the design of every commission his firm receives.

Since founding Behnisch, Behnisch & Partner in 1989 (now Behnisch Architekten), Stefan Behnisch has directed the design of dynamic, award-winning buildings that promote sustainability within the built environment. With a design portfolio that includes master planning, public buildings, health care clinics, laboratories, sports facilities, redevelopment, offices, schools, universities, and museums, Behnisch strives to design inclusive buildings that provide maximum benefit to all users. His innovative approach to sustainable architecture is highly acclaimed in Europe, North America, and all over the world, and his buildings have been honored by prestigious institutions and industry organizations alike.

STEPHEN STIMSON ASSOCIATES (SSA)

Stephen Stimson Associates was founded in 1992 by Stephen Stimson MLA ’87, FASLA, who was born and raised on a 10th-generation dairy farm in central Massachusetts. The firm’s regional work is deeply rooted in an agrarian sensibility that is reflected through the use of local materials and simple patterns.

Over the past decade, SSA’s practice has grown increasingly diverse, expanding from intimate gardens to academic campuses and urban parks across the country.

SSA’s team consists of registered landscape architects and an experienced group of designers, project managers, horticulturalists, planners, and support staff. An open studio environment allows their projects to benefit from the broad range of expertise, diverse educational backgrounds, and creative input of the entire firm. The team is enhanced by the duality of an urban and rural studio.

SSA believes in creating enduring, innovative landscapes that express cultural values and a strong environmental ethic. Design expression is derived from an understanding of the regional landscape, specific conditions of the site, and the needs of the program. Inspiration is taken equally from environmental factors such as geology, vegetation, history, and culture. Through experience, SSA has maintained a commitment to creating finely crafted landscapes that are always culturally relevant and unique to the site’s context.
FOR MORE INFORMATION, PLEASE CONTACT MEGAN TIEDE AT 617-496-7328 OR BY EMAIL AT MEGAN_TIEDE@HARVARD.EDU